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Laminar cylinder-platejunction flow

Results from: Chen, Hung (1992, AIAA Journal)
Levchenya, Smirnov (2007, submitted for publication)
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Our previous experience concerning numerical

simulation of 3D turbulent flow in blade cascades
(L evchenya, Ris, Smirnov, 2006, Proc. 4" Russian Heat Transfer Conf.)
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Experiment:
Kang et al (VPI), 1999
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NASA Glenn Research Center linear transonic blade cascade
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Giel, P.W., Thurman, D.R., Van Fossen,
G.J,, Hippensteele, SA, and Boyle, R.J.
“ Endwall heat transfer measurementsin
a transonic turbine cascade”

ASME Paper 96-GT-180 (1996)
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Axia chord, Cx, cm 12.7
Pitch, cm 13.0
Span, cm 15.24
True chord, cm 18.42
Design inlet flow angle 63.6°
Total turning (at inlet flow angle) 136°
Prandtl number, Pr 0.72
Inlet Reynolds number, Re 1.0" 106
Inlet Mach number, Min 0.38
Exit Mach number, Mex 1.32
Inlet boundary layer thickness, cm 3.2
Inlet turbulence intensity, % 0.25
Inlet turbulence length scale, cm 0.127
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Mathematical model and computational aspects

~

O Reynolds-averaged Navier-Stokes
and energy equation for turbulent
compressible perfect gas flow

O Turbulence modeling:

§ k-w model by Wilcox

§ the SST version of the Menter
model

8§ the“code-friendly” version of the

(—f model by Durbin /

N

O High-order version of the

Jameson’ s H-CUSP scheme

O Regularization technique

removing the difficulties of

compressible flow

computations in low-Mach-

number regions
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CFD code SINF (Super sonic-to-INcompressible Flows)
In-house 3D Navier-Sokes code (start of development: 1992)
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Computational domain and boundary conditions
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Computational grids
i 3-blocks H-O-H matching grids, average y* » 0.8

il

D* istheaveraged cell sizein theregion of hor seshoe vortex for mation

Grid | Number of cells | D*/ C, Refinement aspects
A 360,000 0.027 | Initia grid
B 730,000 0.022 | Add nodesfor al the blocks, far away from the blade
C 750,000 0.022 | Equalize cell aspect ratio in the free-stream flow region
D 760,000 0.017 | Shift gridlines to the blade
E 1,200,000 0.01 | Add nodesfor all blocks, especially in the LE region
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Results: flow field PP
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Comparison of computed and
measured static pressure
distributions over the blade surface
for various span positions

(P, —Inlet total pressure)




T AM. Levchenya, EM. Smimov sPspuU, 2007 enya, E.M. Smirnov ,

Endwall heat transfer:
Influence of
turbulence models
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Endwall heat transfer: grid sensitivity of k-w model
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Endwall heat transfer:
grid sensitivity

Grid D
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Vortex structure
near blade
leading edge

Grid E, MSST model

Endwall streakline
visualization
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Conclusion

g With anin-house code SINF, effects of computational grid refinement have
been investigated for the problem of 3D turbulent flow and endwall heat
transfer. Three turbulence models were used at the computations. The main
attention for the grid-sensitivity aspects was paid to the cases of the k-w
and the MSST models.

q It has been established that the MSST model prediction results are
considerably more sensitive to grid refinement as compared with the k-w
model. MSST model results in prediction of acomplicated flow topology as
compared with the k-w model!.

g Rather fine computational grids are needed to get grid-independent data on
the endwall local heat transfer controlled by complex 3D structure of
secondary flows. With CFD codes of second-order accuracy, one should
use grids comprised of about or more than 2 millions cells (for each full
blade passage) to get a definite conclusion on capabilities of one or another
turbulence model for predictions of phenomena under consideration.
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